Discrepancy inequalities for directed graphs
نویسندگان
چکیده
منابع مشابه
Discrepancy inequalities for directed graphs
We establish several discrepancy and isoperimetric inequalities for directed graphs by considering the associated random walk. We show that various isoperimetric parameters, as measured by the stationary distribution of the random walks, including the Cheeger constant and discrepancy, are related to the singular values of the normalized probability matrix and the normalized Laplacian. Further, ...
متن کاملMore on random graphs and discrepancy for directed graphs
Consider the following problem: Does there exist a graph with large girth and large chromatic number? The girth of a graph is the length of the shortest cycle and the chromatic number is the minimum number of colors needed to color the vertices of the graph so no two adjacent vertices have the same color. These two conditions seem contradictory, intuitively to have high chromatic number we need...
متن کاملCheeger Inequalities for General Edge-Weighted Directed Graphs
We consider Cheeger Inequalities for general edge-weighted directed graphs. Previously the directed case was considered by Chung for a probability transition matrix corresponding to a strongly connected graph with weights induced by a stationary distribution. An Eulerian property of these special weights reduces these instances to the undirected case, for which recent results on multi-way spect...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2014
ISSN: 0166-218X
DOI: 10.1016/j.dam.2014.03.023